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Abstract
In this work, we report the development and assessment of the nonadiabatic molecular
dynamics approach with the electronic structure calculations based on the linearly scaling
subsystem density functional method. The approach is implemented in an open-source
embedded Quantum Espresso/Libra software specially designed for nonadiabatic dynamics
simulations in extended systems. As proof of the applicability of this method to large
condensed-matter systems, we examine the dynamics of nonradiative relaxation of excess
excitation energy in pentacene crystals with the simulation supercells containing more than 600
atoms. We find that increased structural disorder observed in larger supercell models induces
larger nonadiabatic couplings of electronic states and accelerates the relaxation dynamics of
excited states. We conduct a comparative analysis of several quantum-classical trajectory
surface hopping schemes, including two new methods proposed in this work (revised
decoherence-induced surface hopping and instantaneous decoherence at frustrated hops). Most
of the tested schemes suggest fast energy relaxation occurring with the timescales in the
0.7–2.0 ps range, but they significantly overestimate the ground state recovery rates. Only the
modified simplified decay of mixing approach yields a notably slower relaxation timescales of
8–14 ps, with a significantly inhibited ground state recovery.
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1. Introduction

Quantum processes play a critical role in many natural sys-
tems such as light-harvesting and photosynthetic complexes
[1–4], biological vision [5, 6] and light sensing [7–10] systems
as well as in artificial photocatalytic [11–14] and photovoltaic
[15–17] materials, materials for quantum sensing applications
[18–20], or qubits [21–23], to name a few. Quantum coher-
ence facilitates efficient and directional excitation energy
transfer in the light-harvesting complexes [24–26], coupled
electron-proton transfer [27–29], quantum tunneling [30–
32], is critical to biological systems [33], and nonradiative
energy relaxation, which realizes mechanisms of protection
from the photodamage [34–38]. Exciton and multiple exciton
generation [39, 40], singlet fission [41–47], triplet energy
transfer and sensitization [48–50], charge transfer [51–53] and
charge carrier trapping [54, 55] are examples of processes
that determine the operation of artificial energy-harvesting and
conversion materials. Photoinduced nuclear rearrangements
constitute the basis of artificial photocatalysis [56–59] and are
foundational to the functioning of biological photoreceptors
[60–62].

In most of the above examples, quantum transitions
between electronic states mediated by the electron-vibrational
(or electron–phonon) nonadiabatic (NA) couplings are of
interest. Modeling the dynamics of multiple electronic or
excitonic states whose evolution is affected by their coup-
ling to nuclear vibrations can be conducted within the frame-
work of nonadiabatic quantum dynamics, often referred to as
nonadiabatic molecular dynamics (NA-MD). To date, mul-
tiple NA-MD methods have been developed, ranging from the
mixed quantum-classical (MQC) methods such as Ehrenfest
[63, 64] and trajectory surface hopping (TSH) [65–68] tech-
niques to semiclassical wave packet propagation and fully
quantal [69] methods. Due to their simplicity, low computa-
tional cost, and reasonable accuracy, the approximate MQC
techniques have found their wide use in modeling NA dynam-
ics in many condensed-matter [70–85] and molecular systems
[86–89]. However, such modeling in extended systems is
often hindered by two factors: the intrinsic complexity of
quantum dynamics itself and the steeply scaling costs of reli-
able electronic structure calculations. The first limitation is
addressed by adopting the MQC strategies that approximate
fully quantum dynamics via coupled or independent trajector-
ies although at the price of the need for an accurate sampling
of possible outcomes of the coupled electron-nuclear dynam-
ics with such trajectories. Fortunately, in many extended sys-
tems the neglect of back-reaction approximation (NBRA) of
Prezhdo and co-workers [90, 91] can be adopted. It allows
for significantly reducing the costs of the TSH computations
by disregarding multiple possible nuclear histories in lieu
of a single guiding trajectory that parameterizes the evol-
ution of electronic degrees of freedom, including possible
state transitions and coherence decay dynamics. A number
of works also addressed other complexity issues relevant to
quantum dynamics in extended systems such as using larger

integration timesteps [92, 93], avoiding the use of ill-behaved
nonadiabatic couplings (NACs) [94–96], or relying on effie-
int tracking of the state identities in dense manifolds of states
[97–99], a common situation in large-scale systems.

The second limitation of the NA-MD methods when
applied to modeling large atomistic systems is the expense
of the underlying electronic structure calculations. To address
this kind of limitations, a number of approaches have been
devised. They include using semiempirical methods such
as extended Hückel theory [100–103], intermediate neglect
of differential overlap [104], modified neglect of diatomic
overlaps [94, 105, 106], collective electron oscillator [107–
109], Austin Model 1 [110], and well as their combina-
tions with classical force fields [111, 112]. Several groups
have conducted NA-MD simulations using density func-
tional tight-binding [113–116] as well as the extended tight-
binding method [117–119]. More recently, the approaches
based on using machine learning potentials or Hamiltonians
started emerging as viable and practical routes to acceler-
ating such kinds of calculations [120–124]. Besides using
more efficient Hamiltonians, a number of works relied on
reduced-scaling approaches which are particularly appeal-
ing for handling large-scale systems. For instance, Uratani
and Nakai [125] incorporated the divide-and-conquer (DC)
strategy to conduct Ehrenfest dynamics in giant fullerenes,
Wang et al [126] developed a similar-in-spirit linearly scal-
ing three-dimensional fragment scheme to conduct Ehrenfest
dynamics simulations in large supercells of metal-organic per-
ovskite solids. The Blumberger group developed the frag-
ment orbital-based surface hopping [17] approach for mod-
eling NA-MD and charge carrier transport in large super-
cells of organic crystals. Akimov [100] developed a TSH
approach based on non-self-consistent fragment molecular
orbitals and demonstrated its utility in modeling interfacial
charge transfer dynamics with models involving several hun-
dreds of atoms. More recently, yet another fragmentation-
based TSH approach was reported by Wang et al [127] who
used it in simulations of charge transport dynamics in large
systems.

In this work, we explore yet another possibility of using the
reduced-scaling electronic structure methods, namely the sub-
system DFT (sDFT) [128], for modeling NA-MD in extended
periodic systems. We rely on the sDFT implementation [129–
132] within the embedded Quantum Espresso (eQE) package
[128]. Recently, sDFT has been successfully employed for
studying a range of phenomena and time/length scales, such as
the structure of molecular liquids [133, 134], solvation [135,
136], spin systems [137], large biosystems [138–140] and an
array of phenomena involving excited electronic states [141,
142]. For a more extensive overview of the prospects of using
sDFT in various kinds of applications, we refer the reader to
the excellent reviews on the topic by Jacob and Neugebauer
[129, 132]. Despite the wide use of sDFT in more traditional
electronic structure calculations, including in excited states
calculations [140, 143, 144], sDFT is yet to unleash its full
potential in the NA-MD simulations. To date, relatively few
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NA-MD studies with sDFT have been reported, notably by the
Luber group (via delta-SCF) [145, 146].

To enable such applications, we develop a new computa-
tional workflow for NA-MD calculations by interfacing the
sDFT-based electronic structure calculations as done in the
eQE package with the NA-MD calculations executed by the
Libra software [147]. The developed methodology is demon-
strated and assessed by applying it to modeling hot electron
relaxation dynamics in organic crystals of pentacene, a prom-
ising material for organic solar cell applications. Pentacene
has gained a lot of attention due to its potential to particip-
ate in multiple exciton generation and singlet fission [41, 91,
148–150] as well as being a popular acceptor in polymer-
based heterojunction solar cells [45, 151–154]. The excited-
state dynamics in pentacene have been extensively studied
both experimentally [155–158] and computationally [41, 91,
159–161] due to its potential to surpass the Shockley-Queisser
[43, 162] limit of solar energy conversion efficiency.

In the present form, our approach disregards the possibility
of NA transitions between states belonging to different frag-
ments. Thus, one must have a well-defined central system in
which the NA transitions are to be studied. At the same time,
the current sDFT approach enables self-consistent calculations
of orbitals of different subsystems. In this regard, the frag-
mentation (subsystem) approach considered here is meant to
accelerate the calculations of the system-environment inter-
actions by partitioning the environmental sub-system. In this
regard, the present approach is meant to describe the polar-
ization and exchange effects of the environment on the NA
dynamics of a central system of interest. We assume that the
charge or excitation energy transfer effects between the central
system and the environment can be neglected.

2. Theory and computational methodology

2.1. sDFT

The main concept underpinning sDFT is the realization that
any electron density, ρ(r), can be decomposed formally into a
sum of subsystem electron densities, {ρI} :

ρ(r) =
∑
I

ρI (r) . (1)

While the decomposition above is arbitrary, it can be put on
formal grounds by requiring that each of the subsystem elec-
tron densities be determined variationally. That is, indicated
by E [ρ] the total energy functional, we impose:

δE
δρI (r)

= 0,∀I. (2)

Doing so leads to the following Kohn–Sham (KS) equation
with constrained electron density, which needs to be simultan-
eously solved for each subsystem by the following KSCED:[

−1
2
∇2 + vs [ρI] (r)+ vIemb [{ρI}] (r)

]
ϕ I
i (r) = εIiϕ

I
i (r) . (3)

In the above equation, the embedding potential for subsys-
tem I is formally the functional derivative of the non-additive
energy functional which is defined as

vIemb [{ρI}] (r) =
δEnad [{ρI}]

δρI (r)
, (4)

where the non-additive functional takes the form

Enad [{ρI}] = E [ρ]−
∑
I

E [ρI] . (5)

So far, we have only indicated the functional dependence
on the electron densities, however, it is understood that the
total energy functionals require specification of the electron-
nuclear interaction when evaluated with non-self-consistent
electron densities. Programs such as eQE and several others
[140, 163–166] implement sDFT. Both eQE and CP2K imple-
ment a simultaneous solution of equation (3) whereby after
each SCF cycle, the subsystem electron densities are broad-
cast to the other subsystems, and new embedding potentials
are generated. This allows these codes to be particularly well
suited for running ab initio molecular dynamics simulations.
Such is the case in our work.

2.2. Nonadiabatic molecular dynamics

The nonadiabatic dynamics of vibrationally-induced elec-
tronic transitions is studied with several quantum-classical
TSH methods. Namely, we consider the most basic Tully’s
fewest switches surface hopping (FSSH) method [65] and
global flux surface hopping (GFSH) ofWang et al [92], as well
as several approaches that introduce decoherence correction.
The latter includes the instantaneous decoherence at attempted
hops (ID-A) of Nelson et al [167], the modified [168] simpli-
fied decay of mixing (mSDM) originated by Granucchi et al
[169], and the decoherence-induced surface hopping (DISH)
of Jaeger et al [170], although revised in a spirit similar to one
reported by the Zhao group [171] as detailed below. In addi-
tion, we introduce a slight modification of the ID-A algorithm,
in which the wavefunction collapse occurs not at every hop
attempt event but at every frustrated hop, dubbed the instant-
aneous decoherence at frustrated hops (ID-F).

All methods are formulated on the same ground of the
Born–Huang expansion of the electronic wave function.
Namely, this wavefunction is given by a time-dependent super-
position of the dynamical basis states, {Φ i}, chosen in the
present work as excited Slater determinants:

Ψ (r, t) =
N−1∑
I=0

cI (t) Φ I (r;R(t)) . (6)

Here, {cI (t)} are the time-dependent amplitudes cor-
responding to chosen adiabatic basis state functions, Φ i.
Following multiple prior studies [39, 91], the basis functions
Φ i are chosen as excited Slater determinants with various
single excitations involving active occupied and unoccupied
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orbitals. The latter are parametrically dependent on nuclear
coordinates,R, that isΦ i = Φ I (r;R(t)). This dependence ori-
ginates from the dependence of the corresponding electronic
Hamiltonian, Ĥel (r;R(t)), on the nuclear trajectories:

Ĥel (r;R(t)) Φ I (r;R(t)) = Ei (R(t)) Φ I (r;R(t)) . (7)

In this work, we adopt the classical path approximation
[65], which states that nuclei are treated classically using the
forces of the active electronic state. Furthermore, we employ
NBRA according to which the electronic excitations do not
affect the motion of nuclei. In practice, the nuclear trajectories
are precomputed using the ground state adiabatic MD coupled
to a thermostat. The resulting nuclear trajectories, {R(t)}, are
termed the guiding trajectories and act as parameters that con-
trol the evolution of electronic wavefunction, equation (6).
The electronic wavefunction evolves according to the time-
dependent Schrodinger equation (TD-SE). Within the basis of
NBRA-guided adiabatic electronic states, the TD-SE simpli-
fies to:

ih̄
∂ci (t)
∂t

=
∑
j

[Ej (t)δi,j− ih̄Di,j (t)]cj (t) =
∑
j

Hvib
i,j (t)cj (t) .

(8)

Here, Ej (t) is the adiabatic energy of the state j as determ-
ined from equation (7), Di,j (t) = ⟨ Φ i| ∂∂t Φ j ⟩ is the NAC
matrix element for the pair of states i and j, respectively,
and δi,j is the Kronecker delta. The expressions Hvib

i,j (t) =
Ej (t)δi,j− ih̄Di,j (t) can be regarded as matrix elements of
the effective vibronic Hamiltonian. Although the TD-SE
depends on the NACs, in practice we employ the local diabat-
ization (LD) approach [94, 96, 172] to evolve the amp-
litudes. This algorithm helps enforce the correct state fol-
lowing, especially when trivial crossings are encountered.
In addition, it also enforces the consistency of the elec-
tronic state phases along the guiding trajectories. The LD
calculations require only the time-overlaps of basis states
(Slater determinants), Oi,j (t, t+∆t) = ⟨Φ i (t)|Φ j (t+∆t)⟩.
Such time-overlaps can be computed from the time-overlaps
of the KS orbitals, oab (t, t+∆t) = ⟨ϕ a (t)|ϕ b (t+∆t)⟩ using
the Lowdin formula [173], as detailed elsewhere [174].

An important aspect of computing time overlaps in plane-
wave (PWs) codes like eQE is worth mentioning. Namely,
the use of the pseudopotentials in such calculations, particu-
larly ultrasoft pseudopotentials (USPP) [175], makes the cor-
responding KS orbitals non-orthogonal. Their orthogonality is
only mediated by a metric, Ŝ, which ensures ⟨ϕ i|Ŝ|ϕ j⟩= δij.
Because the metric is itself orbital-dependent, it is not pos-
sible to define one that formally connects orbitals at time twith
orbitals at the time t+ dt. We therefore approximate such met-
ric with Ŝ(t+ dt). This is a common approximation that is also
invoked in real-time time-dependent density functional the-
ory and Ehrenfest dynamics with USPPs [176–178]. Another
complication worth mentioning is the notorious phase ambi-
guity/inconsistency problem [179, 180] of canonical orbit-
als. That is, if ϕ i is a normalized eigenfunction of the KS

Hamiltonian so is eiθϕ i. Since subsystems in sDFT are finite,
we can impose without loss of generality the orbitals to be real.
To handle the phase problem, we simply impose the elements
of the overlap matrix to be positive, Oij ⩾ 0. In this way, the
sign is consistent throughout the simulation. While it is pos-
sible to have non-positive matrix elements, their occurrence
is rare and unlikely given the small dt considered (dt≈1 fs).
In addition, such time overlaps are used furtherr in the LD
procedure, which also imposes the consistency of phases and
characters of the evolved states.

Based on the evolved amplitudes of the adiabatic states, the
state transitions are defined. In the FSSH algorithm of Tully
[65], the state hops are attempted with the probabilities given
by:

Pprop,FSSH
i→j (t, t+∆t) =max

(
0,

∆t
h̄ρii (t)

Im
[
ρijH

vib
ji −Hvib

ij ρji

])
.

(9a)

Here, ρij = cic∗j is the coherence matrix element. In this
work, we utilize the NBRA adaptation of the FSSH approach.
According to it: (a) nuclei are governed by the ground state
forces, regardless of electronic state transitions; (b) the nuc-
lear velocities are not changed (rescaled or reverted) as a res-
ult of successful or frustrated hops; (c) the detailed balance is
approximated by the replacing the velocity rescaling reversal
by the hop acceptance criterion: the proposed hops are accep-
ted with probability:

Pacc
i→j (t, t+∆t) =min

(
1,exp

(
−
Ej (t+∆t)−Ei (t+∆t)

kBT

))
.

(9b)

In the GFSH algorithm ofWang et al [92, 181], all states are
classified into two groups. The populations of states in groupA
decrease, that is ∆ρii = ρii (t+∆t)− ρii (t)< 0, i ∈ A, while
the populations of states in the group B increase, ∆ρjj =
ρjj (t+∆t)− ρjj (t)> 0, j ∈ B. The hop proposal probabilities
are then computed as:

Pprop,GFSH
i→j =

∆ρii
ρii

∆ρjj∑
k∈A∆ρkk

, i ∈ A, j ∈ B. (10)

In addition to the FSSH and GFSH algorithms, we consider
several decoherence correction approaches. The most straight-
forward modification of the FSSH algorithm is the mSDM
[168] originated from the simplified decay of mixing (SDM)
of Granucci et al [169] In these methods, the SE amplitudes,
{ci} are modified at every time step as:

c
′

j = cj exp

(
−∆t

τij

)
,∀j ̸= i (11a)

c
′

i = ci

√√√√√1−Σj ̸=i

∣∣∣c′j ∣∣∣2
|ci|2

. (11b)
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Here index i corresponds to the currently active state and the
τij parameter corresponds to pure dephasing time for the pair of
states i and j. In the original SDM formulation, the dephasing

times are computed as τI,J = h̄
|Ei−Ej|

(
1+ 0.1Ha

Ekin

)
, where {Ei}

refer to the energies of adiabatic states and Ekin to the nuclear
kinetic energy of the system. The modification of the SDM
algorithm (hence mSDM) computes the decoherence time τi,j
based on the average energy gap fluctuations, δEij, following
the formula of Akimov and Prezhdo [182]:

τi,j
−1 =

√
5⟨δE2

ij⟩
12h̄2

. (12)

Another simple decoherence correction is the instantaneous
decoherence (ID) approach. Following numerous prior studies
[174, 183], we adopt the ID at the attempted hops (ID-A) of the
Tretiak group [167], In this method, the coherent superposition
is collapsed to the current active state i at every event when the
hop is proposed, no matter whether the hop is accepted or not:

ci = 1, cj = 0, ∀j ̸= i. (13)

In this work, we also propose a new ID variant—the ID-
F. The method is similar to the ID-A, but the state col-
lapses, equation (13), occur at every frustrated hop instead
of every attempted one. The rationale behind this approach is
the following. The frustrated hops occur when the proposed
hop can not accommodate the total energy balance. At such
moments, no coherent superpositions can exist (since they
would violate energy conservation). Thus, the wave function
should be collapsed to the currently active states. The ID-
F requires stronger conditions than ID-A for the collapses
to occur. In fact, the hops should first be attempted. Then,
the attempted hops should be rejected with the probability of

1−min
(
1,exp

(
−Ej−Ei

kBT

))
probability to be considered rejec-

ted. Only under such conditions, the superposition equation (6)
is collapsed according to equation (13). Finally, we also con-
sider the DISH method of Prezhdo [170]. Unlike in FSSH and
similar procedures, the hops between adiabatic states originate
in this method as a result of decoherence. The initial version
of DISH implemented in Libra [40] in 2021 was incorporated
via the following steps.

The decoherence events are monitored. The time at which
an arbitrary state i experiences a decoherence event is expo-
nentially distributed with the corresponding decoherence time
τi such that:

1
τi

=
∑
j ̸=i

rijρjj. (14)

Here, rij is a pure dephasing time for the pair i and j.

(a) At the decoherence event, the coherent superposition,
equation (6), is collapsed onto the decohered state i with
the probability |ci|2 or the decohering state is projected out
of the coherent superpositionwith the probability 1− |ci|2;

(b) In the original prescription of Jaeger et al [170], one can
encounter a situation in which a currently active state
would experience the decoherence event and could be pro-
jected out. In this case, one runs into a problem of incon-
sistency between the surface hopping populations and the
quantum populations, ρii. In the revision presented earlier
[40], this situation was handled as follows: if the deco-
hered state turned out to be the active one, the correspond-
ing amplitudes were projected out only if a successful hop
to any other state could occur. In this situation, a hop to
any other state j is proposed with the probability |cj|2 and
if the hop into this state is successful, the superposition is
collapsed onto this new state and the hop occurs.

(c) Alternatively, if the state j that experiences a decoherence
event is not active, the standard procedure is applied and
the hop into this state is proposed with the quantum prob-
ability |cj|2. If the hop can be accepted, the wavefunc-
tion collapses onto this state, together with the surface hop
(redefining the active state).

In this work, we introduce yet another revision of the DISH
algorithm, dubbed DISH_rev2023 to distinguish it from the
original DISH algorithm of Jaeger et al as well as from the pre-
vious revision. Upon a closer examination, we realize that the
prior revision of DISH may still have an intrinsic problem. In
the limit of infinite decoherence times, no decoherence events
would be determined and hence no hops would ever occur.
In this situation, the SE populations may evolve due to NA
couplings, but the TSH populations will not change, break-
ing the internal consistency of the method. The new approach
combines elements of SDM and prior DISH as well as the
FSSH hopping procedure. The central idea is to incorpor-
ate the gradual wavefunction projection process, as the ori-
ginal DISH procedure prescribed. Namely, the superposition
equation (6) is affected by the projection operator at the deco-
herence events (determined in the same way as in the DISH).
At these events, a state i that is considered ‘decoherent’ has
only two outcomes: to be selected/measured by the environ-
ment with the probability of |ci|2, in which case, the super-
position equation (6) is collapsed onto that state or projec-
ted out from the superposition, in which case ci is set to zero
and the rest of the superposition equation (6) is renormalized.
This process somewhat resembles the gradual modification of
the wavefunction amplitudes done in SDM, equetion (11), but
conducted differently. Although the collapse of the superpos-
ition on the ‘decoherent’ pure state can be regarded as the
signal for state hop to occur, in the present formulation, we
consider the current DISH_rev2023 modification a decoher-
ence correction to the SE amplitudes only (in a way the SDM
or mSDM corrections work) and leaving the state hopping to
be handled by the FSSH procedures. The latter accounts for
both hop proposal and acceptance probabilities. The current
DISH_rev2023 approach can also be thought of as a simple
realization of the stochastic Schrodinger equation with a very
simple dissipation-fluctuation (noise) term realized via the
stochastic projection/collapse process described above.
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3. Computational details

The sDFT calculations are conducted using the eQE software
[128, 184] built upon QE version 5.1.0 (PWSCF code) [185].
The eQE package is used to conduct structural optimization
and adiabatic molecular dynamics simulations of 2× 1× 1 (2
pentacene molecules), 2× 2× 1 (8 molecules), and 3× 3× 1
supercells (18 molecules). Each supercell is broken into the
indicated number of sub-systems, with a single pentacene
molecule per sub-system (figure 1). The automated fragment-
ation Python code is used to conduct this partitioning [186].

The electronic exchange and correlation of valence elec-
trons is described by the Perdew–Burke–Ernzerhof functional
[187]. The effect of the core electrons is accounted for by the
ultra-soft Vanderbilt-type pseudopotentials [188]. The valence
electrons are described using the PWs basis with the wave
function and charge density cutoffs of 40 Ry and 400 Ry,
respectively. The dft-d2 [189] dispersion correction is also
applied to improve the quality of non-bonded interactions. All
calculations are conducted using the single k-point (gamma
point) sampling of the Brillouin zone, which a adequate
for molecular systems (individual fragments). The adiabatic
molecular dynamics is conducted in the NVT ensemble with
the target temperature of 300 K and nuclear integration time-
step of 1 fs. The constant temperature was maintained by a
velocity-rescaling thermostat [190].

In the context of sDFT, KS orbital energies of the full sys-
tem are not accessible. Instead, only the orbital energies of the
subsystems are available. In practice, this requires the modeler
to determine ahead of time which subsystems will be ‘active’
and which will be ‘spectators.’ Such a distinction is common
in fragment-based approaches, where once the fragmentation
is achieved, the attention turns to only one or a few key frag-
ments and the rest only play the role of a chemically inactive
environment. Accounting for environmental effects, however,
is extremely important as the environment polarizes to any
chemical change in the system of interest. Thus, the environ-
ment can perturb the chemical processes making them depart
from the same processes occurring in the gas phase [191–193].
Such a paradigm applies here, where the spectator subsystems,
while not entering the NA-MD directly, polarize the active
subsystem orbitals and orbital energies and contribute to the
underlying Born–Oppenheimer dynamics on an equal footing
to the active subsystem.

To conduct NA-MD calculations, we use a basis of Slater
determinants composed of excitations among six frontier
occupied and six unoccupied orbitals of a selected active frag-
ment (figure 2). The present formulation is limited to the
intrafragmental electronic transitions. No transitions between
states of distinct fragments are allowed yet. However, the
orbitals of each sub-system are determined in a self-consistent
way, since orbitals of all subsystems define the embedding
potential external to each of them taken individually. Thus,
although there is no direct coupling of states belonging to dif-
ferent subsystems, there is still an indirect influence of the sur-
rounding fragments on the states of the fragment of interest,

Figure 1. Schematic illustration of the partitioning of 2 × 1 × 1
supercell (4 molecules) into four fragments (1 pentacene molecule
per fragment), the fragments may span several periodic replicas of
the original cell. The fragment sub-cells are of the same size as the
original cell, corresponding to an FDE value of 1.0. In practice,
smaller FDE values can be used.

which we refer to as a mutual polarization effect. The ener-
gies of such functions, Ei (t), are approximated based on the
sums of the KS energies, εi (t), occupied in such determinants,
Ei (t) =

∑
a∈i naεa (t), following the earlier approach to model

NA dynamics in such system [90]. Based on our calculations,
excitation energy is computed as the function of time:

E(t) =
1
N

N∑
i=1

pSHi (t)Ei (t) , (15)

where N−is the total number of trajectories, pSHi (t) = Ni(t)
N –is

the SH population of a given state i, Ni (t)–is the number of
trajectories associated at the time t with the adiabatic state i.
The productionMD trajectory runs 1.7 ps. In this study, we use
N= 250 trajectories. The excitation energy relaxation curves
are fitted to the stretched-compressed exponential fitting func-
tion, which has been used in prior studies of energy relaxation
dynamics [174, 183]:

E(t) = E0exp

(
−
( t
τ

)β
)
, (16)

where E0 is initial excitation energy, chosen in this work as
2.9 eV. This value corresponds to the initial excitation to
the third band of excited states (figures 5(d)–(f), vide infra).
Considering the lowest excited state in our calculations is
roughly at 1.0, the chosen initial electronic state corresponds
to the value of excess excitation energy of 1.9 eV, which is
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Figure 2. Single-particle excited states basis. ϕ and Φ stand for KS orbitals and Slater determines, respectively.

similar to the 1.5 eV value used in another KS-based sim-
ulation of N-MD in pentacene solids [91], β is a parameter
obtained through fitting that characterizes the kinetics of the
transition (β ∈ [0, 4]) and τ is a fitting parameter to describe
the relaxation time. Fits with an R2 factor greater than 0.8 are
employed to calculate the average timescales and correspond-
ing uncertainties/error bars within a 95% confidence interval.
Each exponential fit is derived from 6 batches of surface hop-
ping trajectories, and the final fit is averaged to yield β values
shown in figure 6. The detailed scripts and codes to conduct
the simulations and data analysis are available in the Zenodo
repository [194].

4. Results and discussion

First, we study the convergence of static calculations on the
frozen density embedding (FDE) cell split parameter (i.e. the
keyword of eQE, fde_cell_split), see figure 3. We con-
sider pentacene supercells of increasing size: 2 × 1 × 1 (144
atoms, figure 3(a)), 2 × 2 × 1 (288 atoms, figure 3(b)), and
3 × 3 × 1 system (648 atoms, figure 3(c)). These systems are
cut into 4, 8, and 18 fragments respectively. In each calcula-
tion, an effective fragment (subsystem) is composed of a single
pentacene molecule. Every pentacene fragment resides in its
own simulation cell as described in [91, 157]. The FDE para-
meter determines the size of a subsystem simulation cell in
comparison to the size of the full (physical) cell. Thus, the
FDE parameter is usually smaller than 1 for each cell lat-
tice vector direction. The FDE parameter of 1 in all direc-
tions corresponds to using the same number of plane waves
for each sub-system as the original system would use the size
of the plane wave basis, it is desirable to reduce such sub-
cells. We stress that the use of the FDE parameter does not
introduce any new approximation in the physics considered by
the model. It merely realizes the goal of avoiding to compute
zeros. Should the simulation cell be larger than the one using

the optimal FDE parameter (which is as we said less than 1)
would not change the results at all and simply add space further
away from the subsystem where the subsystem electron dens-
ity is negligibly small. Coulomb interactions (long ranged)
are always computed on the large, physical cell and thus are
completely and correctly accounted for. A recent development
[158] considers automatic generation of subsystem simula-
tion cells and automatic merging/splitting of subsystems in
relation to the strength of the inter-subsystem interactions.
For pentacene, however, the intersubsystem interactions are
always weak and therefore the subsystem definition and the
simulation cells are kept unaltered throughout the simulations.

We find that the FDE values of 0.8 (figure 3(d)), 0.5
(figure 3(e)), and 0.33 (figure 3(f)) along the x direction for
the 2 × 1 × 1 supercell or along the (x, y) directions for both
2 × 2 × 1 and 3 × 3 × 1 supercells respectively, are suitable
to achieve a reasonable convergence of the total energies and
HOMO-LUMO gaps, yet they provide some efficiency gains.
As the supercell size increases, one can choose smaller FDE
values, leading to more substantial gains in the overall effi-
ciency. The considered FDE parameters effectively reduce the
number of plane waves used in the diagonalization of the KS
Hamiltonian of each subsystem by 20%, 70% and 90% for
2 × 1 × 1, 2 × 2 × 1 and 3 × 3 × 1, respectively. However,
as the FDE decreases beyond the found thresholds, the effect-
ive size of the sub-cells becomes smaller than the molecular
fragments leading to larger errors due to fragmentation.

The molecular dynamics simulation conducted with the
chosen FDE parameters shows an increased flexibility and
mobility of the pentacene molecules in the larger supercell
(figure 4, panels (a)–(c)), although no critical crystal struc-
ture breaking is found at least on the timescale of this simula-
tion. The analysis of the radial distribution functions (RDFs)
of all systems (figure 4, panels (d)–(f)) suggests that structural
disordering increases in the larger system—the probability
distribution of having longer internuclear distances increases
as onemoves from the smaller supercell to the larger ones. One
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Figure 3. FDE convergence study of three supercells of pentacene crystal: (a) 2 × 1 × 1 supercell (144 atoms, 4 fragments); (b) 2 × 2 × 1
supercell (288 atoms, 7 or 8 fragments); (c) 3 × 3 × 1 supercell (648, 18 fragments); (d)–(f) Comparison of the toal energy or
HOMO-LUMO gap differences between two kinds of calculations: ∆X= XQE,full system −XeQE,subsystems the convergence for X being the total
energy (left-arrow triangles) and HOMO-LUMO gap (right-arrow triangles). The FDE values in cyan are the ones chosen for the
calculations in the non-adiabatic dynamic: (d) FDE = 0.8; (e) FDE = 0.5; (f) FDE = 0.33. Supercells are constructed and visualized using
VESTA [195] software.

can also observe the RDF values for the distances between 4
and 5 Angstrom decrease when moving from the 2× 1× 1 to
the 2 × 2 × 1 system. We attribute this change to the relax-
ing of the artificial correlation of the pentacene molecules’
motion present in the smallest supercell. Doubling the size of
the supercell enables more flexibility in the relative orientation
of each of the two pairs of pentacene molecules with respect to
each other. Going further, to the 3× 3× 1 supercell, the RDF
values in the 4–5 Angstrom range do not change significantly.
However, the slope of the longer-distance tail of the RDF dis-
tribution decreases, suggesting the increase of the long-range
disorder in the larger supercell, consistent with the visualiza-
tion of molecular motion (e.g. figure 4(c)).

In general, the increased size of the supercell promotes
stronger disorder. This can be understood by the fact that such
a system has an increased number of independent molecules
that can evolve in an increasingly uncorrelated way compared
to their motion in smaller supercells. The dynamics of the crys-
tals with only 2 pentacene molecules per supercell is much
more affected by spurious correlations since the closest peri-
odic images the two pentacene molecules of the central cell
move in the same way as such molecules themselves. The dis-
ordering of pentacene molecules is facilitated by the weaker

intermolecular and dispersion interactions in this system and
the high range of temperature fluctuations in our NVT simula-
tions with temperature in the 300 ± 100 K interval. Although
with such fluctuations, the instantaneous temperature of the
system is well below the pentacene’s normal melting point, the
lack of dispersion correction in the present functional lowers
the computational melting temperature. Thus, the disordering
is observed in the present study already at the 300 ± 100 K
interval. The disordering is artificially prevented in smaller
supercells due to the artificial correlation of motion of penta-
cene molecules

To characterize the effect of polarization of pentacene frag-
ments by other pentacene molecules present in the crystal,
we compute the total densities of states and evolutions of KS
orbital energies (figures 5(a)–(c)), the evolution of the excit-
ation energies of a selected fragment (figure 5, panels (d)–
(f)), and the average magnitudes of absolute NACs between
excited Slater determinants of this fragment considered in this
work (figure 5, panels (g)–(i)). The comparison across differ-
ent sizes of supercells (columns in figure 5) shows no not-
able differences in densities of states or state energies. The
only major difference is in the NAC maps—the frequency
of larger NAC values is increasing in the larger systems
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Figure 4. Characterization of nuclear structure and dynamics of pentacene systems by the visual molecular dynamics (VMD) [196]: (a), (d)
2 × 1 × 1 supercell; (b), (e) 2 × 2 × 1 supercell; (c), (f) 3 × 3 × 1 supercell. The first row (a)–(c) shows the configurations sampled by the
MD trajectories: it suggests greater mobility and configurational freedom of pentacene molecules in larger supercells; (d)–(f) radial
distribution functions for three supercells—shows an increased long-range disorder in larger systems.

(figure 5(i)). We attribute this effect to the larger conforma-
tional flexibility of pentacene in larger supercells. The NAC
quantifies the coupling of electronic and nuclear degrees of
freedom. Thus, the more pronounced intermolecular vibra-
tions as well as slight angular motion of pentacene in large
systems induce more notable changes of pentacene orbit-
als and hence lead to larger NACs. We emphasize here that
although we consider the NACs for the orbitals belonging to
the same pentacene fragment, these NACs are enhanced by
the inter- rather than intra-molecular interactions. Indeed, in
a more disordered 3 × 3 × 1 supercell, orbitals of the same
molecule may be affected to different extents by the polariz-
ation and exchange effects due to the environment of other
fragments. Thus, the motion of the environmental fragments
on the supercell size as well as on the choice of the NA-
MD can induce stronger dissimilarities in the evolution of
different orbitals of the same fragment, leading to increased
NACs.

Next, we explore the dependence of NA-MD dynamics on
the methodology (figure 6). Namely, we analyze the excita-
tion energy decay times obtained from the fits of the averaged
excitation energy decay curves to the stretched-compressed
exponential decay law, equation (16). There are two main

observations. First, the energy relaxation accelerates in the
larger (3 × 3 × 1) system, whereas there are no significant
differences in relaxation times for the smaller (2 × 1 × 1 and
2 × 2 × 1) supercells. This effect can be rationalized by the
disorder effects and the correspondingly increased NACs in
the larger system. We should note that in the present work,
the increased disordering is caused by the lack of proper
interactions that would stabilize the crystal at this simula-
tion temperature. In this regard, one should be careful relat-
ing the computed timescales to relevant experimental data
on pentacene crystals. However, this effect is still physical
and is interesting from the perspective of the system near its
phase transition point. Having dispersion corrections would
simply result in such an effect occurring at higher temperat-
ures. Thus, a convergence is indeed observed in the sequence
of 2 × 1 × 1 and 2 × 2 × 1 systems. The significant devi-
ation of the timescales computed for 3 × 3 × 1 supercell
is attributed to the finite-size effects enhance dynamical dis-
order of the nuclear system due to weak dispersion correc-
tion in the present version of eQE. The possibility of such
structural and dynamical reorganization is enabled by an
increased independence of motion of fragments in the larger
supercell.
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Figure 5. Characterization of electronic structure properties of pentacene supercells. (a)–(c) partial densities of states of pentacene
fragments in different environments; (d)–(f) evolution of state energies for states of the pentacene systems in different environments; (g)–(i)
average magnitudes of nonadiabatic couplings connecting all pairs of 36 states considered in this work. Columns correspond to different
supercell sizes: (a), (d), (g) 2 × 1 × 1 system; (b), (e), (h) 2 × 2 × 1 system; (c), (f), (i) 3 × 3 × 1 system.

The second observation concerns the relative magnitudes
of the excitation energy relaxation timescales. The computed
dynamics falls within one of the two groups of methods. The
first group includes the FSSH, GFSH, DISH, IDA, and IDF.
All thesemethods predict relatively fast energy relaxation with
the timescales ranging from 1.2 to 2.3 ps for 2 × 1 × 1 and
2 × 2 × 1 supercells or from 0.7 to 1.3 ps for the 3 × 3 × 1
supercell depending on the method. For each given method,
the timescales in the 3 × 3 × 1 supercell are about twice as
small as the corresponding values in the 2× 1× 1 or 2× 2× 1
supercells. The excitation energy decays to a value close to
zero, suggest- ing that the relaxation to the ground state is
also very fast (on this timescale), which is likely a significant
overestimation, considering such processes often occur on the
order of hundreds of picoseconds—dozens of nanoseconds.
Although methods like DISH, IDA, and IDF are considered
the methods that incorporate decoherence corrections, they are
likely insufficient for this kind of problem. In fact, the new
variation of the DISH method yields the timescales compar-
able to those of the overcoherent FSSH and GFSHmethods. In

this regard, the new variation of DISH does not lead to decel-
eration of the excitation energy relaxation expected in simu-
lations with decoherence-corrected methods [174, 183, 197].
The dynamics generated by the IDF method is similar to that
of the IDA, which suggest that there is no much difference in
whether the wave function collaps occurs at attempted or at
frustrated hops, at least for this kind of systems. The second
group of methods includes only the mSDM method. Unlike
all other approaches, this method suggests 13–14 ps relaxation
times for 2 × 1 × 1 and 2 × 2 × 1 systems and about 8 ps for
the 3 × 3 × 1 system. In addition, the excitation energy does
not decay to zero value, suggesting that this timescale corres-
ponds to relaxation dynamics of higher excited states relax-
ing to the lowest excitation. No recovery of the ground state
occurs, in better agreement with empirical knowledge. Thus,
the decoherence correction introduced by the mSDM seems to
be more reliable for the present problem.

Finally, we comment on the obtained timescales. First,
the 0.7–2.0 ps timescales obtained with methods other than
mSDMmay nominally be related to the 600–700 fs hot carrier
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Figure 6. Excitation energy relaxation dynamics for three supercell sizes: (a) 2 × 1 × 1; (b) 2 × 2 × 1; and (c) 3 × 3 × 1. The calculations
are conducted with different methods. From top down: FSSH, GFSH, DISH, IDA, IDF, and mSDM. Grey lines represent the dynamics for
different batches, while blue lines represent the fits of the average excitation energy excess over all batches (R2 > 0.8) together with the
corresponding confidence intervals.

relaxation timescales reported experimentally [198, 199] for
solid pentacene. However, one should keep in mind that solid
pentacene has an increased density of electronic states that
may not be directly related to the density of single-fragment
states even though they are obtained keeping all other frag-
ments in mind. Thus, one may expect that the timescales
obtained for such an isolated fragment may be overestim-
ated compared to the experimental counterparts. In this regard,
only the timescales obtained with the mSDM may be more
reasonable. Acceleration of the dynamics by the increased
density of states would make the timescales obtained with
other methods in a poorer comparison to the experimental
values, while the current mSDM timescales of 8–14 ps may
come to a closer agreement with the experiment. In addi-
tion, the current approach is based on a simplistic descrip-
tion of electronic excited states as excited Slater determinants
whose energies are evaluated based on orbital energy differ-
ences. A more realistic description of excited states of penta-
cene via TD-DFT would likely result in stronger coupling

of such many-body states (mixing different excited Slater
determinants) and would further accelerate the dynamics, as
was already demonstrated in prior studies on other systems.
Finally, the fact that the present guiding trajectories are based
on the adiabatic dynamics guided by the ground state PES
means that nuclear geometries sampled by such dynamics
may be more distant from the configurations with stronger
NACs. This would result in an additional overestimation of
relaxation timescales. Evolving nuclear trajectories on excited
PESs is likely to result in geometries that are closer to strong
NAC regions and hence are more likely to result in faster
relaxation. Thus, yet again the apparent 8–14 ps timescales
obtained with mSDM may be a reasonable upper limit of the
true timescales for hot excited state relaxation. The values in
the 0.7–2 ps range obtained with other methods may become
much smaller after including effects due to many-body nature
of excited states, higher density of states of crystalline
pentacene, and potential non-NBRA corrections of nuclear
trajectories.
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5. Conclusions

In this paper, we present a sDFT/NA-MD methodology for
modeling NA processes in large periodic systems that can be
partitioned into weakly interacting molecular fragments. The
developed approach is implemented via an interface of the
open-source eQE and Libra software packages. We find that
while the initial increase of the minimal supercell of penta-
cene from the 2 × 1 × 1 to the 2 × 2 × 1 does not change the
timescales of the nonadiabatic relaxation of excitation energy,
increasing the supercell further to 3 × 3 × 1 size accelerates
this process due to increased degree of dynamical and struc-
tural disorder in such a system. The increased disorder facilit-
ates the change of the Gaussian relaxation kinetics in favor of
the exponential one. We find a strong dependence of the relax-
ation timescales on the methodology used—for most methods,
the timescales vary in the range of 0.7–2.0 ps. They are smal-
ler for methods lacking decoherence corrections such as FSSH
and GFSH and for the larger 3 × 3 × 1 supercell. Out of all
tested methods, only mSDM is capable of yielding signific-
antly slower relaxation times ranging from 13–14 ps in smaller
systems to about 8 ps in the more disordered 3× 3× 1 super-
cell. However, we argue that such value is a reasonable upper
estimate to true excitation energy excess relaxation timescales,
which may better agree with the experiment after account-
ing for many-body effects, higher density of states in peri-
odic pentacene, and non-NBRA dynamics of nuclear traject-
ories. Finally, we find that the new modification of the DISH
(DISH_rev2023) and the new variation of the ID method (ID-
F) do not show significant improvement in regard of their abil-
ity to capture electronic decoherence effects and perform sim-
ilar to FSSH/GFSH and ID-A, respectively.
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