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Effective Wang-Teter kernels for improved orbital-free density functional theory simulations
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We propose computationally cheap and accurate approximants to the noninteracting kinetic energy density
functional Ts[n] by leveraging the simplicity and computational efficiency of the Wang-Teter functional [L.-W.
Wang and M. Teter, Phys. Rev. B 45, 13196 (1992)]. It depends on a single parameter, the average electron
density ρ0. We address limitations of the Wang-Teter functional, which include variational instabilities and in-
ability to treat materials with finite band gaps. We introduce three physically motivated methods for determining
ρ0: DEN, minimizing the integrated difference of the self-consistent Wang-Teter electron density from the one
from conventional Kohn-Sham density functional theory (DFT); KIN, minimizing the deviation between the
Wang-Teter Ts[n] and the exact value from conventional Kohn-Sham DFT; and finally ENE, minimizing the
difference between the Wang-Teter and conventional Kohn-Sham DFT total energies. The crucial result of this
work is that our approaches effectively mitigate the drawbacks of the Wang-Teter functional. We provide a
thorough analysis of our methods and discuss their potential for large-scale simulations and as templates for
density-dependent nonlocal functionals.
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I. INTRODUCTION AND BACKGROUND

Prediction of the electronic structure of materials and their
molecular constituents is a task that underpins computational
materials science [1]. In recent decades, many successes
of electronic structure theory, and specifically of density
functional theory (DFT) [2], have showcased its usefulness
and objective predictive capabilities [3]. Unfortunately, the
most commonly used formulation of DFT, i.e., conventional
Kohn-Sham DFT (KS-DFT) in its orbital-dependent form, in-
troduces a computational scaling of no less than N3 where N is
a measure of system size (e.g., the number of electrons in the
system or the number of KS orbitals). This scaling arises from
the need to diagonalize the KS Hamiltonian matrix. Therefore,
the N3 scaling is inescapable except in limiting cases such as
extended metals at finite (high) temperature, extended systems
with gap where the nearsightedness of the one-body reduced
density matrix [4–6] can be exploited.

DFT and therefore KS-DFT are based on the realization
that the electronic energy is strictly a functional of the electron
density,

E [n] = Ts[n] + EH [n] + Exc[n] +
∫

dr vext(r)n(r), (1)

where the external potential is indicated by vext(r), the clas-
sical electron-electron repulsion (Hartree) is EH , and the
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exchange-correlation functional (which collects the quantum
corrections to the electron-electron repulsion along with the
correlational kinetic energy) is Exc.

The working expression of conventional KS-DFT, the KS
equation, is an eigenvalue equation for the so-called KS
orbitals φi[n](r):[− 1

2∇2 + vs[n](r)
]
φi[n](r) = εiφi[n](r). (2)

The KS potential is given by

vs[n](r) = δEH [n]

δn(r)
+ δExc[n]

δn(r)
+ vext(r). (3)

The kinetic energy of noninteracting electrons Ts[n] depends
explicitly on the one-electron KS orbitals (in positive-definite
form)

Ts[n] = 1

2

∑
i

fi〈∇φi|∇φi〉, (4)

where the occupation numbers fi are such that
∑

i fi = N
and are either Aufbau or follow the Fermi-Dirac distribution,
where N is the number of electrons. The electron number
density itself is

n(r) =
∑

i

fi|φi(r)|2. (5)

Hence, Ts depends implicitly on the electron density.
As mentioned before, the orthogonalization of the KS or-

bitals causes the calculation cost to scale like O(N3). On
the other hand, orbital-free DFT (OF-DFT), while based on
exactly the same theoretical framework as conventional KS-
DFT is, in effect, an alternative to it. OF-DFT exploits a
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fundamental result of DFT, namely, that all the ground-state
observables can in principle be calculated from the electronic
density alone. That includes the noninteracting kinetic energy
Ts. To find the electronic density that minimizes the energy,
in OF-DFT one must minimize the KS-DFT Lagrangian as an
explicit density functional, to wit

L[n] = E [n] − μ

(∫
n(r)dr − N

)
. (6)

The last term ensures proper normalization.
Carrying out such a minimization is computationally ad-

vantageous provided that, first, an accurate explicit form is
known for Ts[n], and, second, that evaluation of that approxi-
mate Ts[n] is computationally cheap. Thus, in OF-DFT, Ts[n]
is approximated by pure density functionals whose evaluation
cost is kept at or under O[N ln(N ))]. See Ref. [7] for details.
Briefly, in 1927, the local density approximation to Ts[n] led
to the Thomas-Fermi kinetic energy TTF [8]. Explicitly, it is

TTF[n] = cTF

∫
dr n

5
3 (r) ≡

∫
dr τTF(r) (7)

with cTF := 3
10 (3π2)2/3. In 1935 von Weizsäcker developed a

gradient correction TvW [9]. Explicitly. it is

TvW[n] := 1

2

∫
dr ∇√

n(r) · ∇√
n(r). (8)

It was followed up in the 1990s with the so-called generalized
gradient approximations (or GGAs) [10] which continue to be
developed today [11–13].

Kinetic energy density functionals (KEDFs) also can be
formulated to have a nonlocal dependence on the electron
density. They usually are developed starting from the ansatz

Ts[n] = TTF[n] + TvW[n] + TNL[n], (9)

where the nonlocal contribution of the KEDF has the generic
form

TNL[n] =
∫

dr
∫

dr′nα (r)ω[n](r, r′)nβ (r′). (10)

Here α and β are positive scalars, and ω is a kernel function
of dimension (1/length)w with w = 8 − 3(α + β ) that relates
kinetic energy densities at any two spatial points r and r′.

The challenge is to find an appropriate kernel for nonlocal
functionals. The guiding principle in functional develop-
ment has been to satisfy as many exact conditions as
possible [14,15]. In particular, exact conditions in the limit
of the homogeneous electron gas (HEG) have been im-
portant for applications of OF-DFT to materials science
problems [7,16–19].

The details of kernel development begin with the relation-
ship of the second functional derivative of the KEDF with the
KS static response function, namely,

δ2Ts[n]

δn(r)δn(r′)
= −χ−1

s (r, r′). (11)

Discussion of this relationship is in Ref. [7].
In the HEG limit, the KS response function has a simplified

relation (given by Lindhard) in reciprocal space (η = q
2kF

is a

dimensionless momentum and q is the reciprocal variable to
|r − r′|) [20]:

χLind(η) = − kF

π2

[
1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
]
, (12)

where kF = (3π2ρ0)1/3 is the Fermi wave vector for the HEG
with electron density ρ0 = N

V , and N is the number of elec-
trons in the cell of volume V . The incorporation of the linear
response theory in the derivation of the kernel plays an impor-
tant role for describing the oscillations of the density in the
short-range and the Friedel oscillations for metals [21].

The connection, Eq. (11), between Eqs. (12) and (10) can
be exploited easily by inverting the Lindhard function and
arriving at a kernel of the kind ω(r, r′) = ω(|r − r′|). This
can be expressed more conveniently in reciprocal space,

F̂ω(r − r′) = ω̃(q) = −χ−1
Lind − χ−1

vW − χ−1
TF

2αβcTFρ
α+β−2
0

, (13)

where F̂ is the Fourier transform with respect to |r − r′|.
Whether the optimal choice of ρ0 is as the average density

(i.e., ρ0 = N/V ) is an obvious question. From early in the de-
velopment of KEDFs [16], it was recognized that this choice
is undefined for many systems of interest (e.g. molecules,
surfaces). Typically, ways to circumvent that limitation were
used. The focus of this work, instead, is precisely to ex-
ploit the freedom to choose ρ0 in the setting of real material
simulations.

Before discussing kernel density dependence, however, we
note that approximations to Eq. (13) can be devised in terms of
polynomials of q/kF . Examples include truncation at second
order or in a generalized fashion akin to GGAs to give rise
to Laplacian-level KEDFs [22]. Those give rise to KEDFs
that have response properties that can be similar to nonlocal
functional response even though they miss the logarithmic
singularity at q = 2kF [23].

As indicated in Eq. (10), the kernel function itself should
be a density functional, not simply a spatial function. Thus,
it should have pointwise density dependence, not merely the
constant average number density in the simulation cell in
Eq. (13). The question of what specific density dependence
should be in an approximate kernel has drawn the attention of
the OF-DFT community for decades. There are, nonetheless,
many examples of nonlocal KEDFs with density-independent
kernels that can be implemented efficiently and applied
to materials science problems. These include Wang-Teter
(WT) [17], Wang-Govind-Carter (WGC) [16,24], Perrot [19],
and Smargiassi-Madden (SM) [18], Mi-Genova-Pavanello
(MGP) [25], and KGAP of Della Sala and coworkers [26].

KEDFs with density-dependent kernels have been devel-
oped based on the idea that the Fermi wave vector in the
Lindhard function can be approximated by a locally den-
sity dependent one, specifically kF (r) = [3π2n(r)]1/3. Several
functionals employ that approximation, for example, the
LMGP functional [27,28], Huang-Carter (HC) [29], and
revHC (an alternative to HC that avoids some of its numerical
and computational complications [30]).

Another line of functionals, WGC99 [16], XWM [31],
and CAT [32], improve upon the previously mentioned ap-
proach by the use of a more physical density dependence of
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the kernel. They employ an effective nonlocal Fermi wave

vector of the type k̃F (r, r′) = ( kγ
F (r)+kγ

F (r′ )
2 )1/γ . Unfortunately,

the computational cost associated with such nonlocal Fermi
wave vectors limits the applicability of such functionals to
systems that are close to the HEG. See Ref. [7] and references
therein for a discussion of this point in relation to a numeri-
cally challenging Taylor expansion.

As the foregoing summary shows, nonlocal KEDFs with
density-independent kernels have an advantage over KEDFs
with density-dependent kernels in terms of simplicity and,
therefore, computational cost. The problem, however, that
arises with this type of functionals already has been noted:
there is no manifestly preferable prescription for choosing
the reference density ρ0. Given that, the application of such
functionals to systems with quite inhomogeneous electron
densities is particularly striking. Even more problematic is
the mathematically exact finding by Blanc and Cancs [33]
(hereafter “BC instability”) that a WT-like kernel (with
ρ0 = N/V ) results in variationally unstable functionals. Such
instability was characterized later by Witt et al. [34] and also
discussed in Ref. [7].

Taking into account the complexities outlined above, here
we propose that employment of constraint-based ρ0 values
can yield significantly enhanced performance of a density-
independent kernel functional compared to the conventional
ρ0 = N/V choice. In particular, we show that these pragmatic
ρ0 values actually broaden the applicability of the Wang-
Teter functional to include semiconductors, such as the CD
(cubic diamond) and dhcp (double hexagonal-close-packed)
phases of Si. Furthermore, we illustrate that utilization of
pragmatic ρ0 values allows us to circumvent the BC instability
in practice. Consequently, our work presents an approach for
determining the value of ρ0 tailored specifically for nonlo-
cal KEDFs with density-independent kernels. The relevance
of insights gained from this study to the broader class of
KEDFs with density-dependent kernels is a matter for future
exploration.

II. METHODS

Several studies have used some sort of empirically deter-
mined ρ0, either based on the bulk value [21] or optimized to
reproduce the equation of state (EOS) on a system-dependent
basis [25]. To our knowledge, what has not been done is to
calibrate ρ0 to some conventional KS-DFT quantity, thereby
exploiting the underlying commonality of the two. We focus
here on the WT functional and consider four effective ρ0

which we denote as DEN, KIN, ENE, and AVE. These are
found by carrying out the following operations independently
of the materials of interest:

DEN: Minimization of the density difference between
the OF-DFT density, nOF(r), and the conventional KS-DFT
density, nKS(r),

ρ0 = argmin
ρ0

1

2

∫
|nOF(r) − nKS(r)|dr. (14)

(The factor 1
2 is included to correct for a double counting, as

the integral of an absolute value sums both the positive and
negative portions of a function.)

KIN: Minimization of the difference between the Ts values
for OF-DFT, TOF, and conventional KS-DFT, Ts, evaluated
with the conventional KS density,

ρ0 = argmin
ρ0

|Ts[nKS] − TOF[nKS]|. (15)

.
ENE: Minimization of the difference between the total

OF-DFT energy, EOF, and the total energy from conventional
KS-DFT, EKS, evaluated at their respective self-consistent
electron densities,

ρ0 = argmin
ρ0

|EKS[nKS] − EOF[nOF]|. (16)

AVE: ρ0 = N
V , the usual choice for the WT functional.

We note immediately that neither AVE nor any of three
constraint-based choices of ρ0 resolve the WT violation of
the uniform density scaling condition [35] (see Appendix A),
namely,

Ts[nλ] = λ2Ts[n], nλ(r) = λ3n(λr). (17)

That violation is intrinsic to the WT functional because the
α and β exponents in it are α + β = 5

3 . As noted already,
dimensional analysis shows that they should sum to 8

3 .
In testing the four options, we compare against various Si

phases, such as CD (cubic diamond) and DHCP (double HCP)
which have finite band gap. Also BCC (body-centered cubic),
fcc (face-centered cubic), HCP (hexagonal close-packed),
BCT5 (body-centered tetragonal, type 5), SH (simple hexag-
onal), and β tin which exhibit a significant electronic density
of states at the Fermi level and thus are metallic.

For each of these phases we compute the usual equilibrium
parameters, such as the total electronic energy at the equilib-
rium lattice constant E0, the equilibrium volume V0, and the
bulk modulus B0. In practice, we run a finite set of single-point
calculations and then we fit the resulting energy vs lattice
constant curve with a third-order inverse polynomial [36].

In addition, we compute the elastic moduli for CD Si
by fitting the primitive cell energy-versus-strain curves with
second-order polynomials. Specifically, we calculate four
elastic moduli (which represent orthorhombic, uniaxial, and
triaxial deformations), C′, C11, C12, and C44, following the
procedures outlined in Refs. [37,38].

We also compute static response properties according to
the harmonic perturbation approach introduced earlier by
Moldabekov et al. [23], as well as the “lesser” Fukui function
f− [39]. The Fukui function is a local measure of reactivity
and the perturbation approach considered here is a measure
of particle-conserving response. Thus, they represent quite
strenuous tests of a parametrization such as our proposed
prescriptions for ρ0.

The harmonic response was computed by applying the
external potential

vappl(r) = A cos(k · r). (18)

In it, the direction of k is arbitrary but its components must
satisfy the periodicity requirements of the system. That is,
along each lattice vector direction, the allowed values of k are
ka = 2πna

a along the a direction with na = 1, 2, . . ., and simi-
larly along b and c. We choose the strength of the perturbation
to be A = 0.01 Ha. In our simulations we use na = 1 to probe
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the “low-q” density response and na = 5 for the “high-q”
response.

The Fukui function is defined as the derivative of the elec-
tron density with respect to the total number of electrons,
namely,

f± = d n[N](r)

dN±
= lim

h→0

n[N ± h](r) − n[N](r)

±h
. (19)

The plus-minus distinction arises because of the derivative
discontinuity at integer N in DFT. In practice, we use h = 0.1
and we report the Hartree self-energy of the Fukui functions
as follows:

Hf =
∫

[ f−(r) − 1][ f−(r′) − 1]

|r − r′| dr, (20)

which we can evaluate in reciprocal space given that∫
[ f−(r) − 1]dr = 0, thus avoiding the G = 0 singularity.

III. COMPUTATIONAL DETAILS

Conventional KS calculations and OF-DFT simulations
were performed using QEPY [40] and DFTPY [41], respectively,
with bulk-derived local pseudopotentials (BLPS) [42]. In ad-
dition, all calculations used the local density approximation
(LDA) for electron exchange correlation [43]. The energy cut-
off established for all OF-DFT calculations was 680 eV and,
for the orbitals in conventional KS calculations, was set to
816 eV. The first Brillouin zone was sampled by 20×20 × 20
k points as in Monkhorst-Pack grids [44,45].

The values in the tables are determined by Python scripts
that use DFTPY and QEPY. The scripts to recover all figures and
tables in this work are collected in a static snapshot of a
GitHub repository available on GitHub [46].

IV. RESULTS

For each of the phases of Si considered, Table I reports
the equilibrium parameters computed from both conventional
KS-DFT and OF-DFT with the WT functional for each of the
choices of ρ0 discussed previously. Specifically, we present
the equilibrium volume (V0), equilibrium total energy per
atom (E0), and bulk modulus (B0). ρ0 parameters for the
equilibrium structures are presented in Table II. Focusing on
the equilibrium volume V0, we notice that in almost all cases,
the WT functional with the three constraint-based ρ0 values
(DEN, KIN, and ENE) outperforms the usual choice (AVE).
Although for the metallic phases the improvement from the
constraint-based ρ0 values over AVE is modest (2%–5%),
for the semiconducting phases only the constraint-based ρ0

deliver stable phases. AVE for CD, DHCP, and SH wrongly
predicts unbound systems.

The bulk modulus B0 generally follows the same behav-
ior as V0 with some notable deviations. The AVE values
for B0, for example, are either severely underestimated or
severely overestimated. DEN, ENE, and KIN results, instead,
are all generally much closer to the conventional KS reference
values.

The equilibrium energy E0 also shows that the constraint-
based ρ0 values deliver much improved phase energy order-
ing. For example, AVE puts β-tin above BCC while in fact

TABLE I. Equilibrium parameters (equilibrium energy E0, equi-
librium volume V0, and bulk modulus B0) calculated for each phase
by fitting energy vs volume, t ∈ [0.8, 1.4] (see caption of Fig. 1 for
details). We report values for several phases of silicon and for the
four choices of the ρ0 parameter of the WT kernel. Energies are
referenced to the equilibrium energy of the CD phase. Conventional
KS-DFT values (indicated by KS) are also reported for comparison.
AVE is given as “–” for SH, CD, and DHCP because for these phases
WT with AVE ρ0 values predicts unbound crystals.

Si phase ρ0 V0 (Å3/atom) E0 (meV/atom) B0 (GPa)

β-tin KS 14.800 119 116.8
KIN 14.935 153 113.9
ENE 14.801 119 116.8
DEN 14.629 57 140.8
AVE 14.447 365 88.9

BCC KS 14.338 285 100.5
KIN 14.488 319 98.5
ENE 14.326 279 102.2
DEN 14.291 189 117.9
AVE 14.706 393 55.6

FCC KS 13.760 300 102.8
KIN 13.905 338 99.6
ENE 13.760 300 102.8
DEN 13.546 222 123.2
AVE 14.916 416 48.0

HCP KS 14.138 260 100.9
KIN 14.289 298 98.3
ENE 14.142 261 100.8
DEN 14.094 171 119.4
AVE 14.347 412 58.3

SH KS 14.589 120 117.4
KIN 14.716 152 114.8
ENE 14.589 120 117.4
DEN 14.247 60 147.8
AVE – – –

BCT5 KS 16.953 177 100.8
KIN 17.078 193 99.3
ENE 16.953 177 100.8
DEN 16.228 305 137.7
AVE 17.375 704 36.5

CD KS 19.892 0 88.7
KIN 19.997 0 88.0
ENE 19.891 0 88.7
DEN 19.672 0 98.0
AVE – – –

DHCP KS 19.776 9 90.1
KIN 19.882 10 89.3
ENE 19.775 9 90.1
DEN 18.564 305 119.4
AVE – – –

it should be below. Unfortunately, the energy E0 calculated
with DEN deviates by about 0.6 eV from the KS reference
for BCT5, above the bcc phase energy. However, we note that
the DEN, KIN, and ENE choices improve outcomes greatly
over the AVE results. In Fig. 1 we provide a visualization of
the energy versus volume behavior for CD and BCC. It shows
the strikingly unphysical outcome caused by AVE even when
there appears to be an energetic local minimum such as for

085129-4



EFFECTIVE WANG-TETER KERNELS FOR IMPROVED … PHYSICAL REVIEW B 110, 085129 (2024)

TABLE II. Parameter ρ0 in Hartree atomic units for the equi-
librium structure of all Si phases considered. All values should be
multiplied by 10−2.

KIN ENE DEN AVE

β-tin 3.49169 3.51565 3.65791 3.86712
BCC 5.62952 5.64018 5.69329 6.00582
FCC 4.79818 4.82134 4.49756 4.01807
HCP 2.17497 2.29267 2.2831 2.96179
BCT5 2.21286 2.34529 2.63874 3.01834
SH 4.20006 4.21712 4.33257 4.27526
CD 2.79672 2.88202 4.69511 3.50586
DHCP 3.61805 3.63498 3.75672 3.38523

BCC. Finally, we note that for the DHCP phase DEN correctly
predicts a bound state, and places its energy above that of CD
even though the energy is greatly overestimated. Overall, ENE
provides the best agreement against conventional KS-DFT.
This comes at no surprise, as ENE is constructed to reproduce
the total energy. Second in energy performance is KIN and
then DEN.

We also check the performance of the KEDFs for the
calculation of elastic moduli of CD Si (see Table III). KIN,
ENE, and DEN outperform the conventionally employed
AVE. Particularly, KIN and ENE (although ENE does so by
construction) demonstrate a superior capability for describing
the strain deformation of CD Si. These results are extremely
important as they show the ability of all the proposed methods
to reproduce the energetics of CD Si for strains inducing
strong perturbation of the directional character of the Si-Si
bonds.

In Fig. 2 we display the OF-DFT density difference against
conventional KS-DFT for the four choices of ρ0 for the BCT5
phase of silicon. We showcase this phase as it provides the
most insightful depiction of the density difference compared
to the other phases. All the constraint-based ρ0 choices, KIN,
ENE, and DEN, provide clear improvements over the usual
ρ0 value, AVE. The density improvements are most obvious
in the interstitial region, a fact directly correlated to chemical
bonding. This figure provides us with an indication that not
only DEN, but also KIN and ENE are associated with a
generally improved predicted electronic structure over AVE.

In an effort to probe physical conditions under which the
satisfaction of density scaling conditions may play a crucial

FIG. 1. Energy vs volume computed with all KEDFs considered
along a path that conserves the cell symmetry, i.e., volume scaling
Vt = t3V where t is a scaling factor for t ∈ [0.8, 1.4] for bcc and CD
phases of silicon.

TABLE III. Elastic constants of CD Si reported in Mbar. A “–”
is reported for AVE for those constants requiring the bulk modulus
(see Table I). See text for additional details.

KIN ENE DEN AVE KS

C′ 0.579 0.514 0.438 0.155 0.520
C44 0.655 1.025 0.659 0.371 1.022
C11 1.798 1.980 1.188 – 1.966
C12 0.640 0.952 0.312 – 0.926

role, in Tables IV and V, we report RMSDs for the total
energy and noninteracting kinetic energy along a volume
scaling path (see table captions). For the total energy, we
notice that even though ENE performs best by construction,
the other constraint-based ρ0 choices also perform very well
and much better than the AVE. The RMSDs in Table IV were
obtained with self-consistent densities. In contrast, the results
in Table V were computed with the conventional KS electron
density. Thus, they identify functional-driven error only [47].
Clearly, as the focus in that table is the kinetic energy, KIN
performs best. However, both DEN and ENE improve drasti-
cally on the AVE results. We notice that the largest deviations
for DEN and ENE are recorded for the semiconducting phases
CD and DHCP.

For better visualization of the effects of the volume scaling
on the KEDF, in Fig. 3 we plot the Pauli kinetic energy
(TP = Ts − TvW) as a function of the volume scaling factor
t for the CD phase of Si. We choose the range 1 < t < 3
which is wider than the one used for Tables IV and V. The
Pauli energy should be bound and positive semidefinite [7,48],
TP � 0. We point out that all of the constraint-based ρ0 values
cause the Pauli kinetic energy to converge to an asymptote
in the isolated atom limit (i.e., large-t values) while use of
AVE incorrectly plunges TP into negative values, an unphys-
ical behavior [7,33,34]. The constraint-based ρ0 values do
not specifically encode Pauli energy positivity. However, the
result from Fig. 3 is not completely unexpected as we expect
the ρ0 values of DEN, KIN, and ENE to reach an asymptote
in the isolated atom limit, delivering a TP necessarily bounded
from below.

Figure 3 also includes results from a functional version
called SCA. It is a variant of the WT functional whose kernel
from Eq. (13) is modified to scale properly like Eq. (17) in the
following way (see Appendix A):

ω̃SCA(q) = N

V ρ̃0
ω̃(q), (21)

where ρ̃0 is a constant such that ρ̃0 = N/V0, where V0 is
chosen to be the equilibrium volume of the CD phase of Si.

Clearly, SCA is an ad hoc modification of the WT func-
tional which we do not explore further here. Here SCA serves
the purpose of explaining the link between correct scaling of a
KEDF and its physical and unphysical behavior as a function
of the volume scaling factor t . In particular, we notice in Fig. 3
that, as with ENE, DEN, and KIN, SCA correctly reaches an
asymptote for TP in the isolated atom limit, thereby avoiding
Pauli energy negativity. That is at the source of the BC insta-
bility [7,34]. We stress, however, that Pauli energy positivity
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FIG. 2. Difference of the OF-DFT density from the conventional KS-DFT density for BCT5 silicon at the experimental lattice constant.
The ρ0 parameters used are reported in Table II. The same isosurface cutoff of 0.01 was employed for the four cases [yellow (blue) represent
positive (negative) values].

cannot be ensured with the constraint-based ρ0 values. What
can be ensured is that the Pauli energy will be bounded from
below.

In the Supplemental Material, Table S1 [49], we report
the Hf measure of the lesser Fukui function (see Methods
section for details). We notice that the results are dependent
on the choice of ρ0, showing that OF-DFT predictions from
functionals of the type considered here are good for metals
but less so for semiconductor phases. Among the methods
considered, KIN probably performs best, even though only
incrementally. Examination of Fukui function results alone
might suggest that the choice AVE gives similar results as
KIN, DEN and ENE. But that needs to be contextualized
considering the gross failure of AVE to yield proper structures.
Nevertheless, the Fukui functions predicted by KIN, ENE, and
DEN are useful for comparison of trends. The actual values
are not quantitatively accurate, a reminder of how difficult it
is to get accurate local quantities from a comparatively simple
kernel for nonlocal KEDFs.

In Tables VI and VII, we present the results of the electron
density response due to an external perturbation of the kind
in Eq. (18) (see Supplemental Material, Tables S2 and S3

TABLE IV. Root-mean-square deviation (RMSD) of the total
electronic energy (in eV/atom) along a linear path (volume scaling)
such that the lattice vectors and ionic positions are defined as, in
crystal coordinates, [at , bt , ct ] = [ta0, tb0, tc0] with t ∈ [0.8, 1.4] for
several phases of silicon and for the four choices of the ρ0 parameter
in the WT kernel. The self-consistent electron density was used in
each case.

KIN ENE DEN AVE

β-tin 0.008 0 0.395 1.439
BCC 0.009 0 0.18 1.357
FCC 0.018 0 0.022 0.151
HCP 0.009 0 0.163 0.986
BCT5 0.006 0 0.847 1.925
SH 0.008 0 0.315 1.131
CD 0.004 0 0.052 3.321
DHCP 0.005 0 0.446 3.027

for the energy response and S4 and S5 [49] for the KEDF
response). As mentioned before, we probe two regimes, high
q and low q (see Methods for details). The low-q perturbation
probes long-range responses which should be well captured
by orbital-free density functionals [23] for metallic systems.
For semiconductors (like CD and dhcp), the low-q limit of the
inverse Lindhard function employed in the WT functional is
incorrect (i.e., it tends to a constant while instead it should go
like 1/q2, see Ref. [29]) and therefore one would expect strong
deviation in the predicted responses in this limit. The high-q
response probes the high-q limit of the WT kernel which is
the same for all (reasonable) choices of ρ0.

Tables VI and VII show that the OF-DFT results are in gen-
erally qualitative agreement with the conventional KS-DFT
results. The agreement is not broken by the AVE ρ0 results
which fall in line with the outcomes of the other three ρ0

choices. Surprisingly, the low-q response for the semiconduc-
tor phases, CD and DHCP, is in generally good agreement
with the conventional KS-DFT response. Similar behavior
was observed in a prior study [23], likely attributed to the
utilization of simulation cells with relatively small dimensions
that inhibit the exploration of very low values of k in Eq. (18).

Additionally, we address a crucial exact condition for
a KEDF, namely, the reduction to the von Weizsäcker

TABLE V. Root-mean-square deviation (RMSD) of the nonin-
teracting kinetic energy (in eV/atom) Ts along the volume scaling
path described in Table IV. The conventional KS electron density
is employed in all cases. A value of 0 is given for values less than
1.0 × 10−3.

KIN ENE DEN AVE

β-tin 0 0.501 0.112 1.577
BCC 0 0.462 0.15 1.659
FCC 0 0.061 0.017 0.225
HCP 0 0.379 0.106 1.403
BCT5 0 0.709 0.145 1.698
SH 0 0.451 0.095 1.426
CD 0 1.260 1.110 2.006
DHCP 0 1.063 0.681 1.776
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FIG. 3. Pauli energy (TP = Ts − TvW, where Ts is taken from the
value of the WT functional evaluated with the ρ0 given by the
methods indicated in the legend) as a function of t for 1 < t < 3
for the CD phase of Si. A depiction of the behavior of cell and ion
positions as a function of the volume scaling factor t is provided as
inset.

potential for one- and two-electron systems. In Fig. 4, we
present plots of the KEDF potential v(r) = δTs

δn(r) , computed
using the conventional KS density for various functionals ap-
plied to helium, a two-electron atom [for ease of visualization,
we report the product of v(r) with n(r)]. The figure illustrates
that virtually all WT-like functionals (KIN, ENE, and DEN)
exhibit similar behavior in this limiting case. Generally, they
underestimate the potential strength in the atomic region. Con-
versely, the GGA functional LKT tends to overestimate the
potential. As previously reported [27], LMGP exhibits close
agreement with vW.

Table S6 in the Supplemental Material [49] provides the
Pauli energy values (Ts[n] − TvW[n] or TTF[n] + TNL[n] for
nonlocal KEDFs) revealing that KIN inherently yields a null
Pauli energy. That is followed by LMGP, DEN, ENE, and
LKT. Remarkably, DEN and ENE exhibit negative Pauli

TABLE VI. Low-q density response [na = 1 in Eq. (18)]. The
reported values measure the departure of the response density from
the ground-state density 1

2A

∫ |nresp(r) − n(r)|dr.

KIN ENE DEN AVE KS

β-tin 2.014 2.018 2.012 2.008 2.023
BCC 3.258 3.256 3.293 3.373 3.556
FCC 2.180 2.180 2.177 2.164 2.197
HCP 1.869 1.870 1.860 1.861 1.928
BCT5 3.623 3.596 3.537 3.464 3.354
SH 2.113 1.919 2.152 2.108 1.889
CD 2.123 2.113 2.113 2.073 1.921
DHCP 3.785 3.744 3.660 3.569 3.423

TABLE VII. High-q density response [na = 5 in Eq. (18)]. The
reported values measure the departure of the response density from
the ground-state density 1

2A

∫ |nresp(r) − n(r)|dr.

KIN ENE DEN AVE KS

β-tin 0.980 0.981 0.980 0.983 0.983
BCC 0.378 0.378 0.378 0.378 0.388
FCC 0.471 0.471 0.471 0.471 0.469
HCP 0.415 0.416 0.407 0.405 0.402
BCT5 0.446 0.446 0.445 0.445 0.443
SH 0.501 0.695 0.432 0.479 0.448
CD 1.312 1.311 1.311 1.308 1.299
DHCP 0.562 0.561 0.560 0.560 0.556

energy, a phenomenon previously avoided in Si phases but
generally unavoidable unless explicitly enforced in the defin-
ing equations for the method (see DEN, KIN, ENE definitions
in the Methods section). However, as observed in Si phases
under volume scaling, the effective ρ0 values lead to a an
asymptotic value in the isolated atom limit. Hence, we do
not anticipate variational instability (i.e., BC instability) in the
KEDF.

Let us analyze this point further. In the isolated atom
limit for helium, DEN is tasked with achieving a vanish-
ingly small Pauli potential. Without a null Pauli potential,
the density predicted by DEN cannot match the KS density.
Unfortunately, a WT-like KEDF never can achieve an exactly
null Pauli potential. As can be seen in Appendix B, the best
WT can do to minimize the Pauli potential is to explore the
ρ0 → 0 limit where any η [or q, see Eq. (12)] dependence is
removed (as can be seen in the Appendix, terms of 1

η2 and
beyond would vanish in the limit of ρ0 → 0). In this limit,
the Pauli potential from WT-like KEDFs tends to −0.28 of

FIG. 4. For the helium atom, the von Weizsäcker potential is
also the exact noninteracting kinetic energy potential δTs

δn(r) = vvW(r).
The plot features the density times the potential for the three WT-
like functionals (KIN, ENE, and DEN) as well as LMGP [27] and
LKT [11]. AVE WT-like functional is not included as AVE ρ0 values
are not well defined for isolated systems, like atoms.
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Thomas-Fermi, violating Pauli positivity. Our results for he-
lium in Table S7 [49] show a Pauli energy for DEN of −0.651
Ha which corresponds to −0.279 Thomas-Fermi for this
system.

V. DISCUSSION AND CONCLUSION

We have explored the possibility of tuning the kernel of
the nonlocal part of the Wang-Teter functional by employing
a constraint-based value of the ρ0 parameter. Our strategy is
to depart from choosing ρ0 as the average number of electrons
in the simulation cell. Rather, we choose a ρ0 that minimizes
the error against some quantity from conventional Kohn-Sham
DFT. We present three options that minimize the error of
(1) density, (2) noninteracting kinetic energy, and (3) total
electronic energy.

The resulting methods were tested against several bench-
marks aimed at assessing different aspects of the quality of the
electronic structure (from the equation-of-state parameters,
strain, to the density response to external static perturbations,
the quality of the predicted lesser Fukui function to the behav-
ior in the limiting case of a two-electron system). From the
tests there emerges the clear conclusion that the constraint-
based ρ0 choices are superior to the commonly employed
average number of electrons over the simulation cell.

Our results show that even a simple nonlocal functional
with density-independent kernel can be made almost accurate
by physically and formally sensible choice of its one free
parameter. While the energy ordering of the silicon phases
still is not exact, it is much improved. For example, CD and
dhcp are the most stable phases and SH and β-tin are similar
in energy. In comparison, WT predicts CD, DHCP, and SH
to be unbound. Another important aspect of these methods
is their ability to correctly describe the CD Si phase under
strain (including orthorhombic, uniaxial, and triaxial). The
results show that as the strain probes against the directional
character of the Si-Si bonds, the traditional AVE is unable
to provide qualitatively good results. Conversely, the three
proposed methods recover the correct trends quantitatively in
the case of ENE and semiquantitatively in the cases KIN and
DEN.

Additional, major improvements to the WT functional
given by the constraint-based ρ0 choices include the correc-
tion of the BC instability in the isolated atom limit. This is
the reason behind the functionals predicting, correctly, bound
phases for CD, DHCP, and SH. In regards to the BC in-
stability, we showed that the constraint-based choices of ρ0

necessarily provide asymptotically converged ρ0 values as a
function of increasing lattice constant (i.e., the isolated atom
limit will be met with a constant and nonzero ρ0 regardless of
the specific choice). This leads to maintaining bound (finite)
Pauli energies, an exact condition not met by the common
choice ρ0 = N/V .

A significant benefit of our approach has gone unmen-
tioned until now. It is that the ρ0 prescriptions we have
studied obviate the limitation of Wang-Teter–type functionals
to periodic systems. Any one of DEN, KIN, or ENE is well
defined for isolated molecules. The opportunity provided by
that generality remains to be explored.

An important question regards the general applicability of
the strategy discussed in this work, as in practice one would
need to run conventional (explicitly orbital-dependent) KS-
DFT calculations to impose any of the constraints for ENE,
DEN, and KIN. In the era of machine learning and data-driven
models, this work proposes one way to build or improve
nonlocal KEDFs with a density-independent kernel using in-
formation extracted from conventional KS-DFT. To build a
proper model, one would need to set up a supervised learning
procedure mapping ρ0 with the density [i.e., n(r) ←→ ρ0]
or the nuclear geometry [i.e., vext(r) ←→ ρ0] in the form
of typical descriptors [50]. Such an effort would rest on the
strong proof-of-principle results presented in this work. We
leave it for a followup work.

Another observation is that a ρ0 value that is appropriate
for a cell containing a small number of atoms cannot be appro-
priate for a large cell with very many atoms where these can
arrange in many ways with many different local symmetries.
Clearly, a better choice would be a domain dependent ρ0 much
in the spirit of nonlocal functionals with density-dependent
kernels [28–31]. An opportunity lies in the fact that there is,
as yet, no unique or preferred way of determining the kernel
density dependence. Thus, this work should guide future de-
velopments of KEDFs with density-dependent kernels.
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APPENDIX A: DENSITY SCALING OF WT-LIKE KEDFs

1. Background

To determine the density scaling relations of a functional
of the density, it is required to evaluate the functional for the
scaled density

nλ(r) = λ3n(λr). (A1)

For the noninteracting kinetic energy, it was proved [35]

Ts[nλ] = λ2Ts[n]. (A2)

2. Scaling relations for the nonlocal WT functional and similar

General WT-like functional with density-independent
kernel is of the form

TWT[n] =
∫

V
dr dr′ 1

ρ
(α+β−ξ )
0

ω
(
ρ

1/3
0 |r − r′|)nα (r)nβ (r′),

(A3)
where ρ0 =

∫
n(r)dr

V , ξ = 5
3 for SM [18], WT [17],

Perrot [19], MGP [25], and WGC [16] [see WT kernel
in Eq. (13) and the inverse Lindhard function in Eq. (12)] but
in principle can have any value. In the following, κ = α + β
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and z = λr:

TWT[nλ] =
∫

V
dr dr′ 1

ρ
(κ−ξ )
0λ

ω
(
ρ

1/3
0λ |r − r′|)nα

λ (r)nβ

λ (r′)

=
∫

Vλ

dr dr′ 1

λ3κ−3ξ ρ
(κ−ξ )
0

× ω
(
λρ

1/3
0 |r − r′|)λ3κnα (λr)nβ (λr′)

=
∫

V
dz dz′ω

(
λρ

1/3
0

|z − z′|
λ

)
λ3ξ−6nα (z)nβ (z′)

= λ3ξ−6
∫

V
dz dz′ω

(
ρ

1/3
0 |z − z′|)nα (z)nβ (z′)

= λ3ξ−6TWT[n], (A4)

where Vλ = V
λ3 The foregoing result shows that the correct

scaling relations are recovered for ξ = 8
3 and for any value

of κ .
Unfortunately, KEDFs like WT, WGC, SM, MGP, and

Perrot use ξ = 5
3 , and hence violate the scaling relations by

scaling like λ−1. The SCA functional introduced in Eq. (21)
by multiplying the WT kernel effectively by N/V results in a
correct λ2 scaling.

APPENDIX B: BEHAVIOR OF THE WT KERNEL AS ρ0 → 0

As ρ0 approaches zero, the WT kernel tends to

w̃(q) =
5
[(

1
2 + 1−η2

4η
ln

∣∣ 1+η

1−η

∣∣)−1 − 3η2 − 1
]

9αβρ
α+β− 5

3
0

→ − 8

9αβρ
α+β− 5

3
0

(
1 + 24

175

1

η2
+ O(η−4)

)

= −1.28

(
1 + 24

175

1

η2
+ O(η−4)

)
. (B1)

The above shows that the WT Pauli energy would go to
−0.28 TTF should ρ0 → 0. Thus, in this limit, the WT func-
tional violates the Pauli energy positivity condition. This
result is used to aid the discussion of the helium atom results
in the text.
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